Part Number Hot Search : 
G40TSM TE1516 XVT9012 B3834 TAR5S28U MC68HC0 M63840KP ST6306
Product Description
Full Text Search
 

To Download ADL5317 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Avalanche Photodiode Bias Controller and Wide Range (5 nA to 5 mA) Current Monitor ADL5317
FEATURES
Accurately sets avalanche photodiode (APD) bias voltage Wide bias range from 6 V to 75 V 3 V-compatible control interface Monitors photodiode current (5:1 ratio) over six decades Linearity 0.25% from 10 nA to 1 mA, 0.5% from 5 nA to 5 mA Overcurrent protection and overtemperature shutdown Miniature 16-lead chip scale package (LFCSP 3 mm x 3 mm)
FUNCTIONAL BLOCK DIAGRAM
16 15 14 13
COMM FALT
1
COMM
COMM
COMM
ADL5317
OVERCURRENT PROTECTION THERMAL PROTECTION
CURRENT MIRROR 5:1
NC 12
APPLICATIONS
Optical power monitoring and biasing in APD systems Wide dynamic range voltage sourcing and current monitoring in high voltage systems
VSET
2
30 x VSET IPDM
11
29 x R
IAPD 5
3
VPLV VPHV VPHV
5
R IAPD VCLH
6
NC 10
4
GARD
7
VAPD
8
GARD 9
Figure 1.
GENERAL DESCRIPTION
The ADL5317 is a high voltage, wide dynamic range, biasing and current monitoring device optimized for use with avalanche photodiodes. When used with a stable high voltage supply (up to 80 V), the bias voltage at the VAPD pin can be varied from 6 V to 75 V using the 3 V-compatible VSET pin. The current sourced from the VAPD pin over a range of 5 nA to 5 mA is accurately mirrored with an attenuation of 5 and sourced from the IPDM monitor output. In a typical application, the monitor output drives a current input logarithmic amplifier to produce an output representing the optical power incident upon the photodiode. The photodiode anode can be connected to a high speed transimpedance amplifier for the extraction of the data stream. A signal of 0.2 V to 2.5 V with respect to ground applied at the VSET pin is amplified by a fixed gain of 30 to produce the 6 V to 75 V bias at Pin VAPD. The accuracy of the bias control interface of the ADL5317 allows for straightforward calibration, thereby maintaining a constant avalanche multiplication factor of the photodiode over temperature. The current monitor output, IPDM, maintains its high linearity vs. photodiode current over the full range of APD bias voltage. The current ratio of 5:1 remains constant as VSET and VPHV are varied. The ADL5317 also offers a supply tracking mode compatible with adjustable high voltage supplies. The VAPD pin accurately follows 2.0 V below the VPHV supply pin when VSET is tied to a voltage from 3.0 V to 5.5 V (or higher with a current limiting resistor), and the VCLH pin is open. Protection from excessive input current at VAPD as well as excessive die temperature is provided. The voltage at VAPD falls rapidly from its setpoint when the input current exceeds 18 mA nominally. A die temperature in excess of 140C will cause the bias controller and monitor to shut down until the temperature falls below 120C. Either overstress condition will trigger a logic low at the FALT pin, an open collector output loaded by an external pull-up to an appropriate logic supply (1 mA max). The ADL5317 is available in a 16-lead LFCSP package and is specified for operation from -40C to +85C.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c) 2005 Analog Devices, Inc. All rights reserved.
05456-001
ADL5317 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 4 ESD Caution.................................................................................. 4 Pin Configuration and Function Descriptions............................. 5 Typical Performance Characteristics ............................................. 6 Theory of Operation ........................................................................ 9 Bias Control Interface .................................................................. 9 GARD Interface ............................................................................ 9 VCLH Interface .......................................................................... 10 Noise Performance..................................................................... 10 Response Time............................................................................ 10 Device Protection ....................................................................... 10 Applications..................................................................................... 11 Supply Tracking Mode............................................................... 11 Translinear Log Amp Interfacing............................................. 11 Characterization Methods ........................................................ 12 Evaluation Board ............................................................................ 14 Outline Dimensions ....................................................................... 16 Ordering Guide .......................................................................... 16
REVISION HISTORY
7/05--Revision 0: Initial Version
Rev. 0 | Page 2 of 16
ADL5317 SPECIFICATIONS
VPHV = 78 V, VPLV = 5 V, VAPD = 60 V, IAPD = 5 A, TA = 25C, unless otherwise noted. Table 1.
Parameter CURRENT MONITOR OUTPUT Current Gain from VAPD to IPDM Nonlinearity Small-Signal Bandwidth Wideband Noise at IPDM Output Voltage Range APD BIAS CONTROL Specified VAPD Voltage Operating Range 0 0 6 VPHV - 35 VPHV - 35 3 5n 29.7 0.2 100 0.3 20 100 VAPD Supply Tracking Offset (Below VPHV) OVERSTRESS PROTECTION VAPD Current Compliance Limit Thermal Shutdown Trip Point Thermal Hysteresis FALT Output Low Voltage POWER SUPPLIES Low Voltage Supply Quiescent Current High Voltage Supply Quiescent Current 1.90 14 2.0 18 140 20 2.15 21 30 0.5 5m 30.3 5.5 Min 0.198 0.193 Typ 0.200 0.25 0.5 2 2 10 Max 0.202 0.207 1.6 3.0 Unit A/A % % kHz MHz nA V V V V V mV A V/V mV V M A sec sec V mA C C V V mA V mA mA Conditions IPDM (Pin 11) TA = 25C -40C < TA < +85C 10 nA < IAPD < 1 mA 5 nA < IAPD < 5 mA IAPD = 5 nA, VPHV = 60 V, VAPD = 30 V IAPD = 5 A, VPHV = 60 V, VAPD = 30 V IAPD = 5 A, CGRD = 2 nF, BW = 10 MHz, VPHV = 40 V, VAPD = 30 V VAPD > 3 x VPLV VAPD < 3 x VPLV VSET (Pin 2), VAPD (Pin 8) 10 V < VPHV < 41 V 41 V < VPHV < 76.5 V 76.5 V < VPHV < 80 V Flows from VAPD pin 0.2 V < VSET < 2.5 V 1
VPLV VAPD / 3 VPHV - 1.5 VPHV - 1.5 75
VAPD to GARD Offset Specified Input Current Range, IAPD VSET to VAPD Incremental Gain VSET Input Referred Offset, 1 VSET Voltage Range Incremental Input Resistance at VSET Input Bias Current at VSET VAPD Settling Time, 5%
VSET = 2.0 V VSET = 2.0 V, flows from VSET pin VSET = 1.6 V to 2.4 V, CGRD = 2 nF, VPHV = 60 V, VAPD = 30 V VSET = 2.4 V to 1.6 V, CGRD = 2 nF, VPHV = 60 V, VAPD = 30 V VSET = 5.0 V, 10 V < VPHV < 77 V FALT (Pin 1) VSET = 2.0 V, VAPD deviation of 500 mV Die temperature rising Fault condition, load current < 1 mA VPHV (Pin 4, Pin 5), VPLV (Pin 3) VPLV Independent of IAPD VPHV IAPD = 5 A, VAPD = 60 V IAPD = 1 mA, VAPD = 60 V
0.8 4 0.7 10 2.3 3.6 6 0.84 80 2.9 4.5
1
Tested 1.5 V < VSET < 2.5 V, guaranteed operation 0.2 V < VSET < 2.5 V.
Rev. 0 | Page 3 of 16
ADL5317 ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Supply Voltage Input Current at VAPD Internal Power Dissipation JA (Soldered Exposed Paddle) Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Lead Temperature Range (Soldering 60 sec) Rating 80 V 25 mA 615 mW 65C/W 125C -40C to +85C -65C to +150C 300C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 4 of 16
ADL5317 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
16 COMM 15 COMM 13 COMM 14 COMM
FALT 1 VSET 2 VPLV 3 VPHV 4
PIN 1 INDICATOR
12 NC 11 IPDM 10 NC 9 GARD
ADL5317
TOP VIEW (Not to Scale)
GARD 7
VAPD 8
VPHV 5
VCLH 6
NC = NO CONNECT
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin No. 1 2 3 4, 5 6 7, 9 8 10, 12 11 13 to 16 Mnemonic FALT VSET VPLV VPHV VCLH GARD VAPD NC IPDM COMM Description Open Collector (Active Low) Logic Output. Indicates an overcurrent or overtemperature condition. APD Bias Voltage Setting Input. Short to VPLV for supply tracking mode. Low Voltage Supply, 4 V to 6 V. High Voltage Supply, 10 V to 80 V. Can be shorted to VPHV for extended linear operating range. No connect for supply tracking mode. Guard pin tracks VAPD pin and filters setpoint buffer noise (with External Capacitor CGRD to COMM). Optional shielding of VAPD trace. Capacitive load only. APD Bias Voltage Output and Current Input. Sources current only. Optional shielding of IPDM trace. No connection to die. Photodiode Monitor Current Output. Sources current only. Current at this node is equal to IAPD/5. Analog Ground.
Rev. 0 | Page 5 of 16
05456-002
ADL5317 TYPICAL PERFORMANCE CHARACTERISTICS
VPHV = 78 V, VPLV = 5 V, VAPD = 60 V, IAPD = 5 A, TA = 25C, unless otherwise noted.
10m 1m +85C 100
IPDM (Amperes)
2.0 1.5 1.0
IPDM LINEARITY (%)
10m 1m 100
VPHV = 78V, VAPD = 60V VPHV = 45V, VAPD = 32V VPHV = 10V, VAPD = 6V VPHV = 78V, VAPD = 60V VPHV = 45V, VAPD = 32V
2.0 1.5 1.0 0.5 0
-40C +25C
10 1 100n 10n +85C 1n 100p 1n +25C -40C 10n 100n 1 10 100 1m IAPD (Amperes)
0.5 0 -0.5 -1.0 -1.5 -2.0 10m
10 1 100n 10n 1n 100p 1n
VPHV = 10V, VAPD = 6V
-0.5 -1.0 -1.5 -2.0 10m
05456-003
IPDM LINEARITY (%)
05456-008
IPDM (Amperes)
10n
100n
1
10
100
1m
IAPD (Amperes)
Figure 3. IPDM Linearity for Multiple Temperatures, Normalized to IAPD = 5 A, 25C
80 70 60 50
VAPD (V)
Figure 6. IPDM Linearity for Multiple Values of VAPD and VPHV, Normalized to IAPD = 5 A, VPHV =78 V, VAPD = 60 V
31.0 30.8 30.6 VPHV = 45V, +85C VPHV = 45V, +25C VPHV = 45V, -40C VPHV = 78V, +85C VPHV = 78V, +25C VPHV = 78V, -40C
VPHV = 78V, +85C VPHV = 78V, +25C VPHV = 78V, -40C
GAIN (V/V)
30.4 30.2 30.0 29.8 29.6 29.4
05456-006
40 30 20
VPHV = 45V, -40C
0 0
VPHV = 45V, +85C VPHV = 45V, +25C 0.5 1.0 1.5 VSET (V) 2.0 2.5 3.0
29.2 29.0 0 0.5 1.0 1.5 VSET (V) 2.0 2.5 3.0
Figure 4. VAPD vs. VSET for Multiple Temperatures, VPHV = 78 V and VPHV = 45 V, IAPD = 5 A
2.150 2.125 2.100 2.075 -40C +25C
Figure 7. Incremental Gain from VSET to VAPD vs. VSET for Multiple Temperatures, IAPD = 5 A, VPHV = 78 V and 45 V
70
60
78/60 +25C 45/32 +25C 10/6 +25C
78/60 -40C 45/32 -40C 10/6 -40C
78/60 +85C 45/32 +85C 10/6 +85C
0.030
0.020
VPHV = 78V, VAPD = 60V; +85C, +25C, -40C
VAPD VARIATION (V)
50 40
0.010 0
VPHV - VAPD (V)
2.050
2.000 1.975 1.950 1.925 1.900 1.875 1.850 0 10 20 30 40 50 60 70 80 90 VPHV (V)
05456-005
VAPD (V)
2.025
+85C
30
VPHV = 45V, VAPD = 32V; +85C, +25C, -40C
-0.010
20
-0.020
10 0 1n
-0.030
VPHV = 10V, VAPD = 6V; +85C, +25C, -40C
10n 100n 1 10 100 1m IAPD (Amperes)
-0.040 10m
Figure 5. VAPD Supply Tracking Offset vs. VPHV for Multiple Temperatures
Figure 8. VAPD vs. IAPD for Multiple Temperatures and Values of VPHV and VAPD
Rev. 0 | Page 6 of 16
05456-007
10
05456-004
ADL5317
3 +85C +25C -40C 2 2 3 +85C +25C -40C
IPDM LINEARITY (%)
1
IPDM LINEARITY (%)
1
0
0
-1
-1
-2
05456-010
-2
05456-011
-3 1n
10n
100n
1
10
100
1m
10m
-3 1n
10n
100n
1
10
100
1m
10m
IAPD (Amperes)
IAPD (Amperes)
Figure 9. IPDM Linearity for Multiple Temperatures and Devices VPHV =75 V, VAPD = 60 V, Normalized to IAPD = 5 A, 25C
100pA 5mA 10pA
(AMPERES rms/Hz)
Figure 12. IPDM Linearity for Multiple Temperatures and Devices VPHV = 45 V, VAPD = 32 V, Normalized to IAPD = 5 A, 25C
4.5 4.0 3.5
500A 50A
3.0 2.5 2.0 1.5
1pA
5A
(%)
500nA 50nA
100fA
10fA
5nA
05456-035
1.0 0.5 0 1n
05456-036
1fA 1k
10k
100k FREQUENCY (Hz)
1M
10M
10n
100n
1 IPDM (Amperes)
10
100
1m
Figure 10. Output Current Noise Density vs. Frequency for Multiple Values of IAPD, CGARD = 2 nF, VPHV = 40 V, VAPD = 30 V
30 +3 SIGMA 20
Figure 13. Output Wideband Current Noise as a Percentage of IPDM vs. IPDM, CGARD = 2 nF, VPHV = 40 V, VAPD = 30 V, BW = 10 MHz
10 5 50A
NORMALIZED RESPONSE (dB)
10
AVERAGE
0 5A -5 -10 5nA -15 -20 -25 -30 10 500nA
VAPD DRIFT (mV)
0
-10
-20
-3 SIGMA
50nA
05456-043
-40 -40 -30 -20 -10
0
10
20
30
40
50
60
70
80
90
05456-042
-30
TEMPERATURE (C)
100
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
Figure 11. Temperature Drift of VAPD, 3 to Either Side of Mean
Figure 14. Small Signal AC Response from IAPD to IPDM, for IAPD in Decades from 5 nA to 50 A, VPHV = 60 V, VAPD = 30 V
Rev. 0 | Page 7 of 16
ADL5317
10m 1m 100A TO 1mA: T-RISE = <0.5s, T-FALL = <0.5s 100
75
70
VAPD, VOLTAGE (V)
IPDM (Amperes)
10 1 100n
10A TO 100A: T-RISE = <0.5s, T-FALL = <0.5s 1A TO 10A: T-RISE = <0.5s, T-FALL = <0.5s 100nA TO 1A: T-RISE = <1s, T-FALL = <1.5s 10nA TO 100nA: T-RISE = <10s, T-FALL = <15s
65
60 5mA 55 500A 50A 500nA 50nA 5nA
05456-017
10n
05456-016
1n 10n 0 50
1nA TO 10nA: T-RISE = <100s, T-FALL = <150s
50 5A 45 0 50 100 150 200 TIME (s) 250 300 350 400
100
150
200 TIME (s)
250
300
350
400
Figure 15. Pulse Response from IAPD to IPDM for IAPD in Decades from 5 nA to 5 mA, VPHV = 60 V, VAPD = 30 V
N = 2021 MEAN = 29.959 SD = 0.0316714
Figure 17. Pulse Response from VSET to VAPD (VSET Pulsed 1.6 V to 2.4 V) for IAPD in Decades from 5 nA to 5 mA, CGARD = 2 nF, VPHV = 60 V, VAPD = 30 V
N = 2029 MEAN = 0.200035 SD = 0.000454209 20
30
25
15
20
(%)
(%)
15
10
10
5
05456-038
05456-039
5
0 29.7
29.8
29.9
30.0 SLOPE (V/V)
30.1
30.2
30.3
0 0.1980 0.1985 0.1990 0.1995 0.2000 0.2005 0.2010 0.2015 0.2020 IPDM/IAPD (A/A)
Figure 16. Distribution of Incremental Gain from VSET to VAPD for VSET from 1.5 V to 2.4 V, IAPD = 5 A
Figure 18. Distribution of IPDM/IAPD at VPHV = 60 V, VSET = 1.0 V, IAPD = 50 A
Rev. 0 | Page 8 of 16
ADL5317 THEORY OF OPERATION
The ADL5317 is designed to address the need for high voltage bias control and precision optical power monitoring in optical systems using avalanche photodiodes. It is optimized for use with the Analog Devices, Inc. family of translinear logarithmic amplifiers that take advantage of the wide input current range of the ADL5317. This arrangement allows the anode of the photodiode to connect directly to a transimpedance amplifier for the extraction of the data stream without need for a separate optical power monitoring tap. Figure 19 shows the basic connections for the ADL5317.
16 15 14 13
The VAPD adjustment range for a given high voltage supply, VPHV, is limited to approximately 33 V (or less, for VPHV < 41 V). For example, VAPD is specified from 40 V to 73.5 V for a 75 V supply, and 6 V (the minimum allowed) to 28.5 V for a 30 V supply. When VAPD is driven to its lower clamp voltage via the VSET pin, the mirror can continue to operate, but the VAPD bias voltage no longer responds to incremental changes in VSET.
GARD INTERFACE
The GARD pins primarily shield the VAPD trace from leakage currents and filter noise from the bias control interface. GARD is driven by the VSET amplifier through a 20 k resistor. This resistor forms an RC network with an external capacitor from GARD to ground that filters the thermal noise of the amplifier's feedback network and provides additional power supply rejection. The series components, RCOMP and CCOMP, shown in Figure 20, are necessary to ensure essential high frequency compensation at the VAPD input pin over the full operating range of the ADL5317.
ADL5317
COMM
COMM
COMM
FALT 10k LOW VOLTAGE SUPPLY 0 0.1F 0.01F VSET
1 2 3 4
FALT VSET VPLV
COMM
NC IPDM NC
12 11
ADL5317
MIRROR CURRENT OUTPUT
10 9
0.01F
GARD
7
5
6
0.01F IAPD 0 0.1F HIGH VOLTAGE SUPPLY APD 1k 1nF
05456-021
VAPD
VPHV
VCLH
VPHV
GARD
8
GARD X30 20k CGRD
Figure 19. Basic Connections
VSET AMPLIFIER VAPD RCOMP CCOMP
05456-022
At the heart of the ADL5317 is a precision attenuating current mirror with a voltage following characteristic that provides precision biasing at the monitor input. This architecture uses a JFET-input amplifier to drive the bipolar mirror and maintain stable VAPD voltage, while offering very low leakage current at the VAPD pin. The mirror attenuates the current sourced through VAPD by a factor of 5 to limit power dissipation under high voltage operation and delivers the mirrored current to the IPDM monitor output pin. Proprietary mirroring and cascoding techniques maintain the linearity vs. the input current and stability of the mirror ratio over a very wide range of supply and VAPD voltages.
Figure 20. Filtering VAPD Using the GARD Interface
The cutoff frequency of the GARD interface for small signals and noise is defined by
F3dB = 1 2 x 20 k x CGRD
where: F3dB is the cutoff frequency of the low-pass filter formed by the on-board 20 k and CGRD. CGRD is the filter capacitor installed from GARD to ground. A larger value for CGRD (up to approximately 0.01 F) provides superior noise performance at the lowest input current levels, but also slows the response time to changes in VSET. The pull-up of the VSET amplifier is limited to approximately 2.5 mA, resulting in a slew limited region for large signals, followed by an RC decay for the final 700 mV. This decay corresponds to the above single-pole equation. The pull-down of the VSET amplifier is largely resistive, equivalent to approximately 90 k in parallel with 70 A to ground.
BIAS CONTROL INTERFACE
In the linear operating mode, the voltage at VAPD is referenced to ground, and follows the simplified equation VAPD = 30 x VSET GARD is driven to the same potential as VAPD for use in shielding the highly sensitive VAPD pin from leakage currents. The GARD and VAPD pins are clamped to within approximately 40 V below the VPHV supply to prevent internal device breakdowns, and VAPD is clamped to within a volt of GARD.
Rev. 0 | Page 9 of 16
ADL5317
For small input currents, this pull-down must discharge not only CGRD but also CCOMP at the VAPD pin (through the GARD and VAPD diodes). The final 700 mV of settling for lower input currents is dominated by the input current discharge of CCOMP. For larger input currents, the VSET amplifier pull-down discharges only CGRD, since IAPD is capable of discharging CCOMP quickly (see Figure 17). Any dc load on GARD alters the gain from VSET to VAPD due to the 20 k source impedance. Note that the load presented by a multimeter or oscilloscope probe is sufficient to alter the VSET to VAPD gain, and must be taken into account. The GARD pin is internally clamped to approximately 40 V below VPHV to prevent device breakdown, and VAPD is clamped to within 1 V of GARD. For this reason, any shortcircuit to ground from GARD or VAPD must be avoided for VPHV voltages above 36 V, or device damage results. components on VAPD, minimizes the amount of voltage noise at VAPD that is converted to current noise at IPDM.
RESPONSE TIME
The response time for changes in signal current is fundamentally a function of signal current, with small-signal bandwidth increasing roughly in proportion to signal current. The value of the external compensating capacitor on VAPD strongly affects response time, although the value must be chosen to maintain stability and prevent noise peaking. Response time for changes in VSET voltage is primarily a function of the filter capacitance at the GARD pin. See the GARD Interface section for further details. Figure 15 and Figure 17 show the response of the ADL5317 to pulsed input current and VSET voltage, respectively.
DEVICE PROTECTION
Thermal and overcurrent protection are provided with fault detection. The FALT pin is an open collector logic output (active low) designed to assert when an overtemperature or overcurrent condition is detected. A pull-up resistor to an appropriate logic supply is required, and its value should be chosen such that no more than 1 mA output current is used when active. When the die temperature of the ADL5317 exceeds 140C (typical), the current mirror shuts down, causing the bias voltage at VAPD to be pulled down, and FALT asserts. FALT remains asserted until the temperature falls below the trigger temperature minus the thermal hysteresis (20C typical), after which the mirror and biaser again power up. The cycle may repeat until the cause of the fault is removed. When the input current, IAPD, exceeds 18 mA (typical), the current mirror and biaser attempt to maintain the threshold current by allowing the VAPD voltage to fall to a point of equilibrium. In other words, the threshold current represents the compliance of the bias voltage; in this case, the current at which VAPD falls 500 mV below its midrange current value. FALT asserts, but is not guaranteed to remain asserted, as VAPD is pulled down toward ground. If VAPD falls below ~3 V, as in the case of a momentary short-circuit or being driven by a programmable current source exceeding the threshold current, bias current generators critical to device operation become saturated. This causes FALT to deassert and the mirror to shut down. The mirror does not power up until the input current falls below the current limit of the VSET amplifier (approximately 2.5 mA), allowing VAPD to be pulled up to its normal operating level. The FALT pin can be grounded if the logic signal is not used.
VCLH INTERFACE
The voltage clamp high-side pin (VCLH) is typically connected to VPHV for linear operation of the VSET interface and left open for supply tracking mode (see the Supply Tracking Mode section for more details). The voltage at VCLH represents a high-side clamp above which the VSET amplifier output (and VAPD) is not allowed to rise. The voltage is internally set to a temperature stable 2.0 V below VPHV through a 25 k resistor. When VSET is pulled up to 3 V or higher and VCLH is open, VAPD follows 2.0 V below VPHV as VPHV is varied. This bypasses the linear VSET interface for applications where an adjustable high voltage supply is preferred (see the Applications section). The 25 k source resistance allows VCLH to be shorted to VPHV, removing the 2.0 V high-side clamp for extended linear operating range (up to VPHV - 1.5 V) in linear mode. VCLH can be left open in linear mode if a fixed clamp point is desired.
NOISE PERFORMANCE
The noise performance for the ADL5317, defined as the rms noise current as a fraction of the output dc current, improves with increasing signal current. This partially results from the relationship between quiescent collector current and shot noise in bipolar transistors. At lower signal current levels, the noise contribution from the VSET amplifier and other noise sources appearing at VAPD dominate the noise behavior. Filtering the VSET interface noise through an external capacitor from GARD to ground, as well as selecting optimal external compensation
Rev. 0 | Page 10 of 16
ADL5317 APPLICATIONS
The ADL5317 is primarily designed for wide dynamic range applications simplifying APD bias circuit architecture. Accurate control of the bias voltage across the APD becomes critical to maintain the proper avalanche multiplication factor as the temperature and input power vary. Figure 21 shows how to use the ADL5317 with an external temperature sensor to monitor the ambient temperature of the APD. Using a look-up table and DAC to drive VSET, it is possible to apply the correct VAPD for the conditions. Note that Pin 9, Pin 10, and Pin 12 to Pin 15 were removed for simplification.
LOGIC SUPPLY COMM CURRENT MIRROR 5:1
SUPPLY TRACKING MODE
Some applications for the ADL5317 require a variable dc-to-dc converter or alternative variable biasing sources to supply VPHV. For these applications, it is necessary to configure the ADL5317 for supply tracking mode, shown in Figure 22. In this mode, the VSET interface is bypassed. However, the full functionality of the precision current mirror remains available.
5V
16 15 14 13
1
FALT
COMM COMM COMM COMM
NC 12
OVERCURRENT PROTECTION
FALT
OVERCURRENT PROTECTION THERMAL PROTECTION LOOK-UP TABLE AND DAC VSET 30 x VSET 29 x R TEMPERATURE SENSOR R 5V VPLV VPHV VCLH
THERMAL PROTECTION VSET 30 x VSET 29 x R
CURRENT MIRROR 5:1
2
3V TO 5.5V
TRANSLINEAR LOG AMP IPDM IAPD 5 IAPD GARD VAPD OPTICAL POWER
IPDM
11 3
LOG
RSSI
VPLV VPHV VPHV
5 6
R
4V TO 6V
4
NC 10 GARD 9
VCLH
7
GARD
8
VAPD 8V TO 75V BIAS ACROSS APD TIA
05456-024
CGRD 75V FROM DC-DC CONVERTER APD TIA RECEIVER
05456-023
10V TO 77V VARIABLE DC SUPPLY
DATA
DATA OUT
Figure 22. Supply Tracking Mode Figure 21. Typical APD Biasing Application Using the ADL5317
In this application, the ADL5317 is operating in linear mode. The bias voltage to the APD, delivered at Pin VAPD, is controlled by the voltage (VSET) at Pin VSET. The bias voltage at VAPD is equal to 30 x VSET. The range of voltages available at VAPD for a given high voltage supply is limited to approximately 33 V (or less, for VAPD < 41 V). This is because the GARD and VAPD pins are clamped to within ~40 V below VPHV, preventing internal device breakdowns. The input current, IAPD, is divided down by a factor of 5 and precisely mirrored to Pin IPDM. This interface is optimized for use with any of the Analog Devices translinear logarithmic amplifiers (for example, the AD8304 or AD8305) to offer a precise, wide dynamic range measurement of the optical power incident upon the APD. If a voltage output is preferred at IPDM, a single external resistor to ground is all that is necessary to perform the conversion. Voltage compliance at IPDM is limited to VPLV or VAPD/3, whichever is lower.
In supply tracking mode, the VSET amplifier is pulled up beyond its linear operating range and effectively placed into a controlled saturation. This is done by applying 3.0 V to 5.5 V at the VSET pin. It is also necessary to remove the connection from VCLH, which defines the saturation point, to VPHV. Once the ADL5317 is placed into supply tracking mode, VAPD is clamped to 2.0 V below VPHV. For those designs where it is desirable to drive VSET from the VPLV supply, it is necessary to place a 100 k resistor between VSET and VPLV for VPLV > 5.5 V. This is due to input current limitations on the VSET pin.
TRANSLINEAR LOG AMP INTERFACING
The monitor current output, IPDM, of the ADL5317 is designed to interface directly to an Analog Devices translinear logarithmic amplifier, such as the AD8304, AD8305, or ADL5306. Figure 23 shows the basic connections necessary for interfacing the ADL5317 to the AD8305. In this configuration, the designer is can use the full current mirror range of the ADL5317 for high accuracy power monitoring.
Rev. 0 | Page 11 of 16
ADL5317
AD8305 INPUT COMPENSATION NETWORK
16 15 14 13
COMM
COMM
COMM
16
15
14
13
1nF 1k
1
COMM
2.5V
2
VRDZ VREF IREF
VOUT SCAL BFIN
12 11
COMM
COMM
COMM
COMM
200k NC IPDM NC
12 11 10 9 3
AD8305
OUTPUT VOUT = 0.2 x LOG10 (IPDM/1nA)
1
FALT VSET VPLV
10 9
10k VP_LOW 0.1F
VSUM
VNEG
3
0
4
IPDM 10nA TO 1mA
GARD
VAPD
VPHV
VCLH
0.01F
VPHV
GARD
5
6
7
0.01F
0.1F
3V TO 12V
5
6
7
8
0.01F 0 0.1F VP_HIGH TIA DATA PATH
05456-025
IAPD
1k APD 1nF
Figure 23. Interfacing the ADL5317 to the AD8305 for High Accuracy APD Power Monitoring
Measured rms noise voltage at the output of the AD8305 vs. input current is shown in Figure 24 for the AD8305 by itself and in cascade with the ADL5317. The relatively low noise produced by the ADL5317, combined with the additional noise filtering inherent in the frequency response characteristics of the AD8305, result in minimal degradation to the noise performance of the AD8305.
5.5m 5.0m 4.5m 4.0m 3.5m
(V rms)
To minimize leakage on the characterization board, the guard pins are connected to traces that buffer VAPD and IPDM from ground. The triax guard connector is also connected to the GARD pin of the device to provide buffering along the cabling. Figure 25 shows the primary characterization setup. The data gathered is used directly, or with calculation, for all the static measurements, including mirror error between IAPD and IPDM , supply tracking offset, incremental gain, and VAPD vs. IAPD. Component selection is very similar to that of the evaluation board, except that triax connectors are used in place of the SMA connectors. To measure the pulse response, output noise, and bandwidth measurements, more specialized test setups are used.
ADL5317
CHARACTERIZATION BOARD VAPD KEITHLEY 236
AD8305 AND ADL5317
3.0m 2.5m 2.0m AD8305 ONLY 1.5m 1.0m 0.5m 0 10n 100n 1 (A) 10 100 1m
05456-034
VPOS
ADL5317
VNEG
VSET
2
4.7nF 2k
4
INPT
VLOG
8
IPDM FALT VPHV VPLV VSET VCLH
KEITHLEY 236
Figure 24. Measured RMS Noise of AD8305 vs. AD8305 Cascaded with ADL5317
CHARACTERIZATION METHODS
During characterization, the ADL5317 was treated as a high voltage 5:1 precision current mirror. To make accurate measurements throughout the entire current range, calibrated Keithley 236 current sources were used to create and measure the test currents. Measurements at low current and high voltage are very susceptible to leakage to the ground plane.
DC SUPPLIES/DMM
Figure 25. Primary Characterization Setup
Rev. 0 | Page 12 of 16
05456-026
TRIAX CONNECTORS: SIGNAL - VAPD AND IPDM PINS GUARD - GUARD PIN SHIELD - GROUND
ADL5317
ALKALINE + D CELLS - + - DP 8200 + DC POWER SUPPLY - ALKALINE D CELL + - 604
1k
83nF
HP89410A
TDS5104
VECTOR SIGNAL ANALYZER VPHV VPLV VSET +9V VAPD ALKALINE + D CELLS - + - + - + - IPDM +
ADL5317
EVALUATION BOARD VAPD VSET AGILENT 33250A
ADL5317
+12V
Q1 FALT VPHV VPLV IPDM VCLH
FET BUFFER RL 20k 33F R1 GE 273 - +9V +
-12V
DC SUPPLIES/DMM
Figure 26. Configuration for Noise Spectral Density and Wideband Current Noise
1pF
05456-041
Figure 28. Configuration for Pulse Response from VSET to VAPD
NETWORK ANALYZER OUTPUT R A B
60V VPHV VAPD
5V VPLV IPDM
ADL5317
EVALUATION BOARD RC VAPD Q1 RC AGILENT 33250A DC SUPPLIES/DMM IPDM TDS5104
RF
FALT VPHV VPLV VSET VCLH
POWER SPLITTER +
05456-027
ADL5317
VSET EVAL BOARD COMM
AD8045
AD8067
AD8138
EVAL BOARD
+ -
RF 50
1V
05456-040
-
Figure 27. Configuration for Pulse Response from IAPD to IPDM Figure 29. Configuration for Small Signal AC Response
The setup in Figure 26 is used to measure the output current noise of the ADL5317. Batteries are used in numerous places to minimize introduced noise and remove the uncertainty resulting from the use of multiple dc supplies. In application, properly bypassed dc supplies provide similar results. The load resistor is chosen for each current to maximize signal-to-noise ratio while maintaining measurement system bandwidth (when combined with the low capacitance JFET buffer). The custom LNA is used to overcome noise floor limitations in the HP89410A signal analyzer. Figure 27 shows the configuration used to measure the IAPD pulse response. To create the test current pulse, Q1 is used in a common base configuration with the Agilent 33250A, generating a negative biased square wave with an amplitude that results in a one decade current step on IPDM. RC is chosen according to what current range is desired. Only one cable is used between the Agilent 33250A and RC, while everything else is connected with SMA connectors. A FET scope probe connects the output of the AD8067 to the TDS5104 input.
The configuration in Figure 28 is used to measure VAPD while VSET is pulsed. Q1 and RC are used to generate the operating current on the VAPD pin. An Agilent 33250A pulse generator is used on the VSET pin to create a 1.6 V to 2.4 V square wave. The capacitance on the GARD pin is 2 nF for this test. The setup in Figure 29 is used to measure the frequency response from IAPD to IPDM. The AD8138 differential op amp delivers a -1.250 V dc offset to bias the NPN transistor and to have a 500 mV drop across RF. This voltage is modulated to a depth of 5% of full scale over frequency. The voltage across RF sets the dc operating point of IAPD. RF values are chosen to result in decade changes in IAPD. The output current at the IPDM pin is fed into an AD8045 op amp configured to operate as a transimpedance amplifier. The Feedback Resistor, RF, is the same value as that on the output of the AD8138. Note that any noise at the VSET input is amplified by the ADL5317 with a gain of 30. This noise shows up on VAPD and causes errors when measuring nanoamp current levels. This noise can be filtered by use of the GARD pin. See the GARD Interface section for more details.
Rev. 0 | Page 13 of 16
05456-037
-
LNA
RC
ADL5317 EVALUATION BOARD
Table 4. Evaluation Board Configuration Options
Component VPHV, VPLV, GND VSET R11, C8 Function High and Low Voltage Supply and Ground Pins. APD Bias Voltage Setting Pin. The dc voltage applied to VSET determines the APD bias voltage at VAPD. VAPD = 30 x VSET. APD Input Compensation. Provides essential high frequency compensation at the VAPD input pin. Input Interface. The evaluation board is configured to accept an input current at the SMA connector labeled VAPD. Filtering of this current can be done using L1 and C9. Mirror Interface. The output current at the SMA connector labeled IPDM is 1/5 the value at VAPD. R1 allows a resistor to be installed for applications where a scaled voltage referenced to IAPD instead of a current is desirable. Guard Options. By populating R9 and/or R10, the shell of the VAPD SMA connector is set to the GARD potential. R7 and R8 are installed so that the guard potential can be driven by an external source, such as the VSUM potential of the Analog Devices optical log amps. C7 filters noise from the VSET interface and provides a high frequency ac path to ground. Additional filtering is possible by installing a capacitor at C10. C10 should equal C7. Optional Supply Tracking Mode. Connecting Jumper W2 and opening Jumper W1 places the ADL5317 into supply tracking mode. In this mode, the voltage at VAPD is typically 2 V below VPHV. R3 = 100 k for VPLV > 5.5 V. Extended Linear Operating Range. Closing W1 connects Pin VPHV and Pin VCLH. This allows for an extended linear control range of VAPD using VSET. Default Condition Not Applicable Not Applicable C8 = 1 nF (size 0603) R11 = 1 k (size 0603) L1 = 0 (size 0805) C9 = open (size 0805) R1 = open (size 1206)
VAPD, L1, C9
IPDM, R1
R7, R8, R9, R10, C6, C7, C10
R7 = R8 = 0 (size 0402) R9 = R10 = open (size 0402) C7 = 0.01 F (size 0805) C6 = C10 = open (size 0402) R3 = 0 (size 0402) W1 = open W2 = closed W1 = closed C4 = open (size 0805) R6 = 0 (size 0402) R2 = 10 k (size 0603) C1 = C2 = 0.01 F (size 0402) C3 = 0.1 F (size 0603) C5 = 0.1 F (size 1206) R4 = R5 = 0 (size 0402)
VPLV, W1, W2, R3
VCLH, W1, C4, R6
FALT, R2 C1, C2, C3, C5, R4, R5
FALT Interface. R2 is a resistive pull-up that is used to create the logic signal at FALT. Supply Filtering/Decoupling.
Rev. 0 | Page 14 of 16
ADL5317
16
15
14
13
COMM
COMM
COMM
COMM
FALT VSET R2 10k R4 VPLV C3 0.1F 0 R3 0 W2 C2 0.01F C1 0.01F GND C5 0.1F
1 2 3 4
FALT VSET VPLV
NC IPDM NC
12 11 10 9
R8 0 IPDM OUTPUT
ADL5317
R1 OPEN R7 C6 0 OPEN
GARD
7
5
6
W1 R5 0 C4 OPEN C10 OPEN
R6 0
VAPD
VPHV
VCLH
VPHV
GARD
8
R11 1k C8 1nF C9 OPEN R9 OPEN
05456-030
L1 0
C7 0.01F
VPHV R10 OPEN VAPD
Figure 30. ADL5317 Evaluation Board Schematic
05456-031
Figure 31. ADL5317 Evaluation Board Layout
Figure 32. ADL5317 Evaluation Board Silkscreen
Rev. 0 | Page 15 of 16
05456-032
ADL5317 OUTLINE DIMENSIONS
3.00 BSC SQ 0.45 PIN 1 INDICATOR TOP VIEW 2.75 BSC SQ 0.50 BSC 12 MAX 0.90 0.85 0.80 SEATING PLANE 0.30 0.23 0.18 0.80 MAX 0.65 TYP 0.05 MAX 0.02 NOM 0.20 REF 1.50 REF 0.60 MAX 0.50 0.40 0.30
Preliminary Technical Data
PIN 1 INDICATOR
*1.65 1.50 SQ 1.35
13 12
16
1
EXPOSED PAD
9 (BOTTOM VIEW) 4 8 5
0.25 MIN
*COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2 EXCEPT FOR EXPOSED PAD DIMENSION.
Figure 33. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 3 mm x 3 mm Body, Very Thin Quad (CP-16-3) Dimensions shown in millimeters
ORDERING GUIDE
Model ADL5317ACPZ-REEL7 1 ADL5317ACPZ-WP1 ADL5317-EVAL
1
Temperature Range -40C to +85C -40C to +85C
Package Description 16-Lead Lead Frame Chip Scale Package (LFCSP_VQ) 16-Lead Lead Frame Chip Scale Package (LFCSP_VQ) Evaluation Board
Package Option CP-16-3 CP-16-3
Branding R00 R00 R00
Z = Pb-free part.
(c) 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05456-0-7/05(0)
Rev. 0 | Page 16 of 16


▲Up To Search▲   

 
Price & Availability of ADL5317

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X